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Abstract. This paper proposes a new heuristic for global optimization. The method utilizes an
attraction-repulsion mechanism to move the sample points towards the optimality. The proposed
scheme can be used either as a stand-alone approach or as an accompanying procedure for other
methods. Some test results on nonlinear test functions in the category of “minor to moderate diffi-
culty” are included. The ease of implementation and flexibility of the heuristic show the potential of
this new approach.
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1. Introduction

In recent years global optimization has become a rapidly developing field. Many
real life problems in areas such as physics, chemistry and molecular biology (Schoen,
1989; More and Wu, 1995) involve nonlinear functions of many variables with
attributes (multi modality, discontinuouity, etc.) that are difficult to optimize by
conventional mathematical tools, such as the gradient methods.

To overcome the difficulties described above, stochastic search methods, which
rely heavily on computer power, have been developed starting in the 1980s. A
random search algorithm may give a usable solution even when other algorithms
fail because of irregularities or high dimensionality. We refer to Dixon and Szeg6
(1978), Kan and Timmer (1987a, b), Térn and Zilinskas (1989) and Boender (1985)
for excellent surveys.

In this paper we study a special class of optimization problems with bounded
variables in the form of:

min  f(x)
s.t. xell,ul, )

where [[, u] ;= {x € N" | I} < x;x < ug, k = 1,...n}. Because of the simplicity in
maintaining feasibility, this model has been extensively studied by random search
methods (Demirhan et al., 1999), and also by direct methods (Huyer and Neumaier,
1999) .

The organization of the paper is as follows. In Section 2, the motivation behind
the proposed heuristic is introduced. The general scheme and the sub procedures
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of the algorithm are discussed in Section 3. In Section 4, the computational results
on a set of test problems are presented. Further research and conclusion are given
in Section 5.

2. Motivation

In stochastic global optimization, population-based algorithms start with randomly
sampling points from the feasible region. According to the objective function val-
ues of these sample points, the regions of attraction are determined. Then a mech-
anism is invoked for further exploitation of these candidate regions. In Genetic
Algorithms this mechanism corresponds to the reproduction, crossover and muta-
tion operators (Michalewicz, 1994), whereas in two phase methods the exploration
of the feasible region is conducted by random sampling followed by hill-climbing
(Kan and Timmer, 1987a; T6rn and Viitanen, 1994) or gradient-based methods
(Fletcher and Reeves, 1964).

Similarly, we construct a mechanism that encourages the points to converge to
the highly attractive valleys, and contrarily, discourages the points to move fur-
ther away from steeper hills. This idea enables us to make an analogy with the
attraction—repulsion mechanism of the electromagnetism theory.

Similar to that in the elementary electromagnetism, we can think of each sample
point as a charged particle that is released to a space. In our approach, the charge of
each point relates to the objective function value, which we are trying to optimize.
This charge also determines the magnitude of attraction or repulsion of the point
over the sample population — the better the objective function value, the higher the
magnitude of attraction.

After calculating these charges, we use them to find a direction for each point to
move in subsequent iterations. We select this direction by evaluating a combination
force exerted on the point via other points. Like the electromagnetic forces, this
force is calculated by adding vectorially the forces from each of the other points
calculated separately.

We need to state that though the analogy with electromagnetism theory motiv-
ates the idea, there are some notable differences, which we will make clear when
we introduce the heuristic in subsequent sections.

Finally, similar to the hybrid population-based algorithms (Hart, 1994; Glover
and Laguna, 1995), we may apply a local search procedure to improve some of the
objective function values observed in the population.

3. Electromagnetism-like (EM) Heuristic

We deal with the functions of the form (1), with the following parameters given:
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n dimension of the problem.
uy upper bound in the kth dimension.
Iy lower bound in the kth dimension.

f(x) pointer to the function that is minimized.

In this section, we introduce the general scheme of the EM heuristic and present its
sub procedures. This section ends by an example that demonstrates the behavior of
the algorithm visually.

3.1. GENERAL SCHEME FOR EM

The heuristic (EM) consists of four phases. These are initialization of the algorithm,
calculation of the total force exerted on each particle,* movement along the dir-
ection of the force, and application of neighborhood search to exploit the local
minima. The general scheme can be given as in Algorithm 1.

ALGORITHM 1. EM(m, MAXITER, LSITER, )
m: number of sample points

MAXITE R: maximum number of iterations
LSITER: maximum number of local search iterations
8: local search parameter, § € [0, 1]

1: Initialize()

2. iteration < 1
3: whileiteration < MAXITER do
4 Local(LSITER, §)

5. F <« CalcF()

6 Move(F)

7 iteration < iteration + 1

8: end while

3.2. INITIALIZATION

The procedure Initialize is used to sample m points randomly from the feasible
domain, which is an n dimensional hyper-cube. Each coordinate of a point is as-
sumed to be uniformly distributed between the corresponding upper bound and
lower bound. After a point is sampled from the space, the objective function value
for the point is calculated using the function pointer f(x) (Algorithm 2, line 6). The
procedure ends with m points identified, and the point that has the best function
value is stored in x?¢* (line 8).

* We use the words particle and point interchangeably throughout the paper.
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ALGORITHM 2. Initialize()

1: for i =1tom do
2. fork=1tondo
A< U (@01
x,i <— Iy + AMug — Iy)
end for
Calculate f(x%)
. end for
: xPeSU— argmin{ £ (x), Vi}

NI AW

3.3. LOCAL SEARCH

The procedure Local is used to gather the local information for a point x’. The
parameters, LSTER and § that are passed to this procedure, represent the number
of iterations and the multiplier for the neighborhood search, respectively.

The procedure iterates as follows: First, the maximum feasible step length (Length)
is calculated according to the parameter § (Algorithm 3, line 2). Second, for a
given i, improvement in x’ is sought coordinate by coordinate (lines 5-13). For a
given coordinate, the point x' is assigned to a temporary point y to store the initial
information. Next, a random number is selected as a step length and the point y is
moved along that direction. If the point y observes a better point within LITER
iterations, the point x’ is replaced by y and the neighborhood search for point i
ends (lines 14-17). Finally the current best point is updated (line 22).

This is a simple random line search algorithm applied coordinate by coordinate.
This procedure does not require any gradient information to perform the local
search. Instead of using other powerful local search methods (Solis and Wets,
1981), we have utilized this procedure because we wanted to show that even with
this trivial method, the algorithm shows promising convergence properties.

ALGORITHM 3. Local(LSITER, )
1: counter < 1
2: Length < S(maxi{uy — Ik})
3:fori =1tomdo
for k =1ton do
)\1 ~ U (0, 1)
whilecounter < LSITER do
y <« x!
Aoy «— U (0, 1)
if A1 > 0.5then
10: Vi < Y + Az2(Length)
11: ese

oMo gk
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Figure 1. Superposition principle (Fi3 = 47[’2’2122, i=1,2).
12: Vi < Y — Az(Length)
13: end if
14: if £(y) < f(x')then
15: xi <~y
16: counter < LSITER —1
17: end if
18: counter < counter + 1
19: end while
20:  endfor
21: end for

22: xPt — argmin{ f (x), Vi}

3.4. CALCULATION OF TOTAL FORCE VECTOR

The superposition principle (Figure 1) of electromagnetism theory states that the
force exerted on a point via other points is inversely proportional to the distance
between the points and directly proportional to the product of their charges (Cowan,
1968).

In each iteration we compute the charges of the points according to their ob-
jective function values. However, in our heuristic the charge of each point is not
constant and changes from iteration to iteration.

The charge of each point i, ¢', determines point i’s power of attraction or
repulsion. This charge is evaluated as,

fOe) = fbeh
D ER) = )

k=1

g =exp| —n , Vi. (2)

In this way, points that have better objective values possess higher charges. We
multiply the fraction by the dimension », because in higher dimensions the number
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of points in the population tends to get large. As a result of this, the fraction may be-
come very small, and may cause overflow problems in calculating the exponential
function.

We define the charge, ¢’ according to the relative efficiency of the objective
function value of the corresponding point in the population. This is clearly not the
unique nor the optimal choice for this calculation. An alternative calculation, which
rank the points according to their objective function values, may be used here. Our
experiments have shown that the proposed calculation in Eq. (2) is satisfactory for
our study.

Notice that, unlike electrical charges, no signs are attached to the charge of an
individual point in Eq. (2). Instead, we decide the direction of a particular force
between two points after comparing their objective function values. Hence, the
total force F' exerted on point i is computed by the following equation:

. . qiqj . . .

& | W if FOD < D
3 N T R N ®3)

# Wi 6D 2 0

As seen in Algorithm 4 (lines 7-8), between two points, the point that has a
better objective function value attracts the other one. Contrarily, the point with
worse objective function value repels the other (lines 9-10). Since x®*! has the
minimum objective function value, it acts as an absolute point of attraction, i.e., it
attracts all other points in the population.

When we examine the algorithm carefully, we can see that the determination of
a direction via total force vector resembles the statistical estimation of the gradient
of f. However, the estimation computed by our heuristic is different since this dir-
ection depends on the Euclidean distance between the points. That is, the points that
become close enough may lead each other to a direction other than the statistically
estimated one.

ALGORITHM 4. CalcF():F
1: for i =1tom do

N

i _ fah)— faPesh )
q < &Xp ( NS (b — o)

Fi <0
. end for
cfori=1tomdo
for j =1tomdo
if f(x/) < f(x') then
Fl— F' 4+ (x/ —x")

igl .
‘.’_”xi Tk {Attraction}

[/

Q@ 0N kw

else o
Fi « Fi — (xJ — x')—2L2 . {Repulsion}

[

-
<
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11: end if
12:  end for
13: end for

3.5. MOVEMENT ACCORDING TO THE TOTAL FORCE

After evaluating the total force vector F*, the point i is moved in the direction of
the force by a random step length as given in Eq. (4). Here the random step length,
A, is assumed to be uniformly distributed between 0 and 1. Obviously, there are
many other distributions that can be used in calculation of this step length. But for
ease of computation, we have applied uniform distribution.

We have selected the step length randomly in order to ensure that the points
have a nonzero probability to move to the unvisited regions along this direction.
In our future work, we hope to show the convergence in probability by using this
random step length.

In Eq. (4), RNG is a vector whose components denote the allowed feasible
movement toward the upper bound, u*, or the lower bound, ¥, for the correspond-
ing dimension (Algorithm 5, lines 6-10). Furthermore, the force exerted on each
particle is normalized so that we can maintain the feasibility. Thus,

. . F! .
x'=x' +AW(RNG) i=1,2,...m 4)

Algorithm 5 gives the pseudo-code of the Move procedure. Note that the best
point, x**t is not moved and is carried to the subsequent iterations (line 2). This
suggests that we may avoid the calculation of the total force on the current best
point in Algorithm 4 (yet the computational effort for calculating the total force on
current best point is negligible).

ALGORITHM 5. Move(F)

1: fori =1tom do
2. if i # bestthen
L<U(@O1
i F'
F' < TFT
for k =1ton do
if F{ > 0then
xi o< xp + AFf (up — xb)
ese
xi o< xi + AF (xp — 1)
10: end if
11: end for

NSO W
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12:  endif
13: end for

3.6. TERMINATION CRITERIA

In our study we terminate the EM procedure by using a maximum number of
iterations. According to our test results, in general 25 iterations per dimension (i.e.,
MAXITER = 25n) is satisfactory for converging to the optimum point for the
moderate difficulty functions.

Another termination criterion that might be used is the successive number of
iterations spent without changing the current best point. In other words, if the cur-
rent best point is not changed for certain number of iterations, the algorithm may be
stopped. However this decision has to be studied carefully since algorithm may be
stopped before converging to the global optimum. On the other hand, unnecessary
function evaluations may be avoided by stopping earlier.

In the literature several other stopping conditions are studied (Torn et al., 1999).
One of the frequently used criteria is to terminate the algorithm when the observed
objective function value is e-close to the optimal value (Huyer and Neumaier,
1999). However, this criterion is not appropriate if the global optimum is not known
in advance.

3.7. AN EXAMPLE

We use the Spiky * function to demonstrate a typical run of the algorithm. In the
following figures, ¢ represents the current best point and * shows the location of
the global optimum. In this example we have selected the population size to be 20.

Figure 2 shows the location of the points when the algorithm is started by
randomly sampling points from the feasible region. Initially the current best point
(xPesY is far away from the global optimum.

The points in the population move towards the region around the current best
point. Note that some points are repelled closer to the global optimum (Figure 3).

In Figure 4, one of the points observes an objective function value better than
the current best point, and this new point becomes the current best point. Thus, the
points start to converge towards this new xest,

Figure 5 demonstrates that the points in the population are directed towards the
region around the current best point. And after this iteration, the global optimum is
located.

* We also include this function in our computational study, Section 4.
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Figure 2. The starting position of the particles just after the procedure Initialize.

4. Computational Results

In a recent paper, Torn et al. (1999) classified the well-known global optimization
problems as unimodal, easy, moderately difficult, and difficult problems. They also
suggested that the test problems should represent different classes.

We have included some of the functions that Térn et al. (1999) had discussed
and we have created a test function set consisting of 15 functions. The remaining
functions are taken from Demirhan et al. (1999), and from the web site, http://
solon.cma.univie.ac.at/~neum/glopt.ntml. We refer to this test function set as the
general test functions.

Initially, we studied three versions of EM, which differ in the local search
procedure. We demonstrate our results for the general test functions in terms of
the average number of function evaluations over 25 runs. The average and best
objective function values are also reported.

After selecting the best version, we applied EM to a well known test set, which
consists of seven test functions (Dixon and Szegd, 1978). In addition to reporting
our results, we compare the results with other methods recently known from the
work by Huyer and Neumaier (1999).

All the computations were conducted on a Pentium-I11 450 MHz PC. The al-
gorithm is coded in C++ and it is available upon request.
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Figure 3. Points start to attract and repel each other.

4,1. GENERAL TEST FUNCTIONS

We tested EM with three different versions of the Local procedure. First, we ex-
cluded the local procedure completely from the general scheme. Second, we ap-
plied the procedure to all sample points. Finally, we experimented with the applic-
ation of local search to the best point only.

The input parameters for the functions are given in Table 1. The functions are
presented in alphabetical order, so the order of a function does not necessarily
represent the difficulty of the corresponding function.

In order to analyze the effects of different parameters, we have selected two
functions — one from each set — and constructed an experimental design. We
include this experimental design in the Appendix.

4.1.1. EM without Local procedure

In order to examine the basic convergence properties of EM, we first excluded the
Local procedure from the algorithm. This was achieved simply by assigning value
0 to the parameter LSITER. The immediate effect of this choice is the loss of the
local information. In this case, even when a point is close to a local optimizer,
it is not directed deeper into the valley. In certain sense, this approach behaves
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Figure 4. One of the repelled points observes a better region, and signals for the others.

Table 1. Parameters for General Test Functions

Function name n m MAXITER LSITER )

Complex 2 10 50 10 5.0e-3
Davis 2 20 50 30 5.0e-3
Epistacity(4) 4 30 50 10 1.0e-3
Epistacity(5) 5 40 100 20 1.0e-3
Griewank 2 30 100 20 1.0e-3
Himmelblau 2 10 50 5 1.0e-3
Kearfott 4 10 50 5 1.0e-3
Levy 10 20 75 5 1.0e-3
Rastrigin 2 20 50 10 5.0e-3
Sine Envelope 2 20 75 10 5.0e-4
Stenger 2 10 75 10 1.0e-3
Step 5 10 50 5 1.0e-3
Spiky 2 30 75 10 1.0e-3
Trid(5) 5 10 125 50 1.0e-2

Trid(20) 20 40 500 150 1.0e-3
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Figure 5. Best point attracts the others and global optimum is found.

Table 2. Results of EM without LOCAL procedure

Function name  Avg.evals. Avg f(x) Best f(x) Known optimum

Complex 363 0.0175 0.0158 0.0
Davis 622 1.6157 1.5641 0.0
Epistacity(4) 1079 0.0379 0.0149 0.0
Epistacity(5) 2603 0.0355 0.0207 0.0
Griewank 1914 0.0896 0.0032 0.0
Himmelblau 84 0.0934 0.0759 0.0
Kearfott 231 0.0008 0.0000 0.0
Levy 835 0.1429 0.0303 0.0
Rastrigin 141 —1.9566  —1.9871 -2.0
Sine Envelope 962 0.0744 0.0400 0.0
Stenger 282 0.0020 0.0019 0.0
Step 728 0.0000 0.0000 0.0
Spiky 1702  —38.6378 —38.7251 —38.85
Trid(5) 968  —28.2997 —29.0324 —30.0

Trid(20) 43354  —33.2567 —177.6124 —1520.0
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Table 3. Results of EM with LOCAL procedure applied to all points

Functionname Avg.evals. Avg f(x) Best f(x) Known optimum

Complex 5534 0.0000  0.0000 0.0
Davis 8091 0.4088 0.1322 0.0
Epistacity(4) 32823 0.0003 0.0001 0.0
Epistacity(5) 189769 0.0001 0.0001 0.0
Griewank 50790 0.0000  0.0000 0.0
Himmelblau 3287 0.0000 0.0000 0.0
Kearfott 6190 0.0000 0.0000 0.0
Levy 44814 0.0001 0.0000 0.0
Rastrigin 10359  —2.0000  —2.0000 —20
Sine Envelope 15629 0.0116 0.0001 0.0
Stenger 8316 0.0000 0.0000 0.0
Step 5743 0.0000  0.0000 0.0
Spiky 10264 —38.8004 —38.8492 —38.85
Trid(5) 37154 —29.9979  —29.9999 ~30.0
Trid(20) 1.5e+6 —1519.6117 —1519.9768  —1520.0

blindly. However, since no additional information is collected, the average number
of function evaluation figures are not large.

The results in Table 2 show that the solutions for the functions Davis and
Trid(20) are less satisfactory than those for the other functions. Davis is highly
irregular in the neighborhood of the optimum, while the feasible region of Trid(20)
is a 20-dimensional hypercube with bounds [—400, 400] in each dimension. There-
fore the number of evaluations in an experiment is not large enough to adequately
explore the feasible space.

Our results show that even if we do not use the Local procedure, the average
function values are still good. In most of the problems, EM is able to approximate
the optimum. Nevertheless, the accuracy of the average function values is not good
enough. This motivated the next experiment.

4.1.2. EM with Local procedure applied to all points

We next applied the Local procedure to all points in the population. This approach
has two advantages; first, the attractive parts of the feasible region are more thor-
oughly examined, and second, the repelled points have better chance to lead to as
yet undiscovered minimizers.

Notice that the performance of the algorithm improves but at the cost of the
number of function evaluations required by the Local procedure (Table 3). Es-
pecially, the accuracy of the results for the functions Davis, Levy, and Trid(20)
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Table 4. Results of EM with LOCAL procedure applied to current best point

Functionname Avg.evals. Avg f(x) Best f(x) Known optimum

Complex 598 0.0000 0.0000 0.0
Davis 832 0.4538 0.2356 0.0
Epistacity(4) 1580 0.0002 0.0001 0.0
Epistacity(5) 4123 0.0002 0.0000 0.0
Griewank 2470 0.0000 0.0000 0.0
Himmelblau 520 0.0001 0.0000 0.0
Kearfott 712 0.0000  0.0000 0.0
Levy 2783 0.0001 0.0000 0.0
Rastrigin 792 —1.9898  —2.0000 —20
Sine Envelope 1007 0.0352 0.0097 0.0
Stenger 724 0.0000 0.0000 0.0
Step 870 0.0000  0.0000 0.0
Spiky 1520 —38.6684 —38.8486 —38.85
Trid(5) 1870  —29.9963 —29.9997 ~30.0
Trid(20) 99731 —1519.4472 —1519.5543  —1520.0

are much better. However, the number of evaluations drastically increases for the
problems with high dimensionality.

4.1.3. EM with Local procedure applied to the current best point only

To reduce the number of function evaluations, we tried applying Local proced-
ure to the current best point only (Table 4). This choice balances the number of
evaluations and the accuracy of the results.

For this case, the average number of evaluations is closer to those of the first
version (Section 4.1.1), while the quality of the results is comparable to those of
the second version (Section 4.1.2). However, when the function has good attractors
spread over the feasible region as in functions Sne Envelope and Spiky, the points
visiting the neighborhood of the global optimum may not be powerful enough
to attract other points. In function Davis, the algorithm rapidly converges to the
neighborhood of the optimum point, but the region around global optimum has
many local minimizers in steep valleys. Thus, EM is trapped in one of these local
minima.

4.,2. FURTHER TEST SET

Our initial experiments show that EM rapidly converges to the minimizers. The
local information gains more importance either when the function is highly irregu-



AN ELECTROMAGNETISM-LIKE MECHANISM FOR GLOBAL OPTIMIZATION 277

Table 5. Results of EM for Dixon and Szegd (1978) Functions

Function? n m MAXITER Avg.evals. Avg f(x) Bestf(x) fglob
Shekel [S5]P 4 40 150 3368 —9.7320 —10.1532 —10.1532
Shekel [S7] 4 40 150 1782 —10.4024 —10.4029 -—10.4029
Shekel [S10] 4 40 150 5620 —10.5109 —10.5109 -10.5364
Hartman [H3] 3 30 75 1114 —3.8625  —3.8628 —3.8628
Hartman [H6] 6 30 75 2341 —3.3072  —3.3224 —3.3224
Goldstein Price [GP] 2 20 50 420 3.0001 3.0000 3.0000
Branin [BR] 2 20 50 315 0.3980 0.3979 0.3979
Six Hump Camel [C6] 2 20 50 233 —1.0316 —1.0316 —1.0316
Shubert [SHU] 2 20 50 358 —186.7227 —186.7309 —186.7309

aThe labels of the functions are given in brackets (Huyer and Neumaier, 1999).
bTwo of the 25 runs do not converge to the global optimum.

lar in the neighborhood of the global optimum, or when the global optimum is far
from the highly attractive local minimizers. Although the application of the local
search to all points provides the best results, the improvement over applying local
search only to the current best point is not significant. Therefore, for most of the
problems, applying local search to all points may turn out to be overkill. In the
subsequent experimentation, we utilized the third version of EM for comparison
with other global optimization methods.

For the comparison, we used the standard test functions given by Dixon and
Szeg0 (1978). The performance of different methods on these functions has been
extensively studied by Huyer and Neumaier (1999). We use their results in compar-
ing EM with the existing approaches. As a stopping criterion we use the following
Eqg. (5), that is also applied by Huyer and Neumaier (1999):

(f (x"*Y — foiob)
| fgton|

where fgion represents the known global optimum.

Table 5 shows our results with the corresponding parameters. EM does not
exhibit any difficulty to converge to the global optimum in all functions, except
Shekel [S5]. This function has an attractive local minimizer, which is far from the
global optimum.

Table 6 shows the performance comparison of EM with other methods. Ex-
cept for the last row, the figures in the table are taken from Huyer and Neumaier
(1999). From the table we see that MCS achieves the best results followed generally
speaking by the other methods (labeled with (f)), which use first or second order
information in the neighborhood search. EM does as well as or better than the most
of the older methods indicated in the upper part of the table.

Overall, our additional comments are in order:

<107 (5)
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Table 6. Comparison of EM with different methods in terms of number of function evaluations

Method S5 S7 S10 H3 H6 GP BR C6 SHU
Bremmerman -Aa -2 -2 -Aa -2 -2 250

Mod. Bremmerman -4 - - -4 515 300 160

Zilinskas -a -2 -2 8641 5129
Gomulka-Branin 5500 5020 4860

Torn 3679 3606 3874 2584 3447 2499 1558

Gomulka-Térn 6654 6084 6144

Gomulka-V.M. 7085 6684 7352 6766 11125 1495 1318

Price 3800 4900 4400 2400 7600 2500 1800

Fagiuoli 2514 2519 2518 513 2916 158 1600

De Biase-Frontini 620 788 1160 732 807 378 587

Mockus 1174 1279 1209 513 1232 362 189

Bélisle et al.? 339 302 4728 1846

Boender et al.f 567 624 755 235 462 398 235

Snyman-Fattif 845 799 920 365 517 474 178
Kostrowicki-Pielad - - - 200 200 120 120

Yaof 1132 < 6000
Perttunenf 516 371 250 264 82 97 54 197
Perttunen-Stuckman’ 109 109 109 140 175 113 109 96 -Aa
Jones et al.n 155 145 145 199 571 191 195 285 2967
Storn-Price ¢ 6400 6194 6251 476 7220 1018 1190 416 1371
Mcs -&f 83 129 103 79 111 81 41 42 69
EM 3368 1782 5620 1114 2341 420 315 233 358

@ Method converged to a local minimum.

b Average number of function evaluations when converges. For H6, converged only 70% of time.

¢ Global minimum not found within 12 000 function calls.

d Average over 25 cases. For H6, average over 24 cases only; one case did not converge within 12 000
function calls.

€ The version that gives the best results is selected.

f Recent methods that use first or second order information.

9 Requires closed form for a particular integral.

h partitions the search space into hyper-rectangles.

Missing entry means that no result is available from the literature(Huyer and Neumaier, 1999).

— Unlike MCS and other methods indicated with (f), EM does not use the first
or the second order information.

— EM is able to provide answers for all the problems.

— All the methods, other than EM that are included in Table 6, have some limit-

ations due to their rigid structures. EM has a very flexible design which would
permit using the desirable features from other methods.
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— We could have included results using other methods, which are discussed in
Section 1.2. (such as Genetic Algorithms, Simulated Annealing, etc.). How-
ever our earlier results (Demirhan et al., 1999) with these methods on some of
the problems above have shown that EM outperforms those methods.

— In both sets of test problems, we have observed that EM performs well when
there is a pattern in the function. However, if there are multiple attractive local
minimizers spread around the feasible region, EM may be deceived and the
performance of it may decrease.

— The combination of the general scheme with other powerful local search meth-
ods, such as Solis and Wets (1981), may increase the efficiency of the al-
gorithm.

— The computational results to date suggest that we could improve our results by
using first or second order information, such as Fletcher and Reeves (1964),
in the local search.

5. Conclusion and Further Research

In this paper we have developed a new heuristic, EM, which is a powerful yet easy
algorithm for global optimization. We have applied the algorithm to different test
problems in the literature. Without using the first or second order information, EM
converges rapidly to optimum when the number of function evaluations is used as
a performance measure.

EM can be used as a stand-alone approach or as an accompanying algorithm for
other methods. The strength of the algorithm lies in the idea of directing the sample
points toward local optimizers by utilizing an attraction-repulsion mechanism.

Further research will be pursued on using the first or second order information
of the functions instead of Local* sub procedure. Also, application of other local
search methods as discussed by Solis and Wets (1981) might produce better results.
Especially, using an adaptive local search algorithm, which gets better precision in
the close neighborhood of the minimizers is preferable.

Another interesting study might be merging this approach with some parti-
tioning algorithms (Pinter, 1992), since shrinking the feasible region shows better
convergence properties. Here the movement along the total force is allowed to be
up to the boundaries. Nevertheless, keeping the step length smaller, may accelerate
the algorithm.

In this paper we have tried the test functions with dimensions up to 20. There
are other test functions in the literature which have higher dimensions. The per-
formance of EM for those functions might also be studied.

* In some of the problems, it is not necessary to apply this sub procedure. However in certain
cases this procedure improves the results critically.
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Table 7. Levels of the factors used in experimental
design

Factors A(m) B(MAXITER) C(9)

Level 1 5n 25n 1.0e-4
Level 2 10n 50n 1.0e-3
Level 3 20n 75n 1.0e-2

Our future research includes a thorough study of the convergence properties of
EM. We intend to examine the stochastic process generated by the algorithm, and
to elaborate the convergence in probability.
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Appendix: Effects of Different Parameters

The proposed approach depends on several parameters, hence in this appendix we
study the effects of different parameters by conducting a general factorial design
with three factors.

We have selected the number of sample points (), the maximum number of
iterations (MAXIT ER), and the local search parameter (§) as our factors (A,
B and C respectively). We have not added the maximum number of local search
iterations since in the local search procedure the big while loop ends as soon as a
better neighbor solution is found (Algorithm 3, lines 14-17).

The levels of the factors are given in Table 7. We select the levels of the first
two factors according to the dimension of the problem (r). In each combination of
the levels we have used 10 replicates, thus totally 270 runs have been taken.

We have used the function Sne Envelope from the first test set and the function
Shekel [S5] from the second set. We have selected these functions because the
computational results have shown that the efficiency of EM on these functions is
not as good as its efficiency on other functions in the corresponding test sets.

Tables 8 and 9 show that the significant factors of the model are A, B and AC.
These results suggest that when we run the heuristic for a long time or when we
increase the number of points in the population the chance of finding the global
optimum increases. Besides, if we change the local search parameter, §, with the
maximum number of iterations the results improve.
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Table 8. Analysis of variance table for the function Sne

Envelope
Sumof Degrees of Meansquare F value
squares freedom
A 5.421e-3 2 2.71e-3 411
B 2.2e-2 2 1.1e-2 16.35
C 1.037e-3 2 5.186e-4 0.79
AB 3.474e-3 4 8.684e-4 1.32
AC 6.470e-3 4 1.617e-3 2.45
BC 1.9e-3 4 4.751e-4 0.72
ABC  3.013e-3 8 3.767e-4 0.57
Error 0.16 243 6.596e-4
Total 0.20 269

Table 9. Analysis of Variance Table for the function Shekel

[S5]
Sumof Degrees of Meansquare F value
squares freedom
A 48.58 2 24.29 3.01
B 71.41 2 35.71 4.43
C 42.42 2 21.21 2.63
AB 49.42 4 12.35 1.53
AC 83.16 4 20.79 2.58
BC 30.58 4 7.65 0.95
ABC 126.83 8 15.85 1.97
Error  1958.36 243 8.06
Total 2410.76 269
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